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Chamelia (catchment area = 1603 km2 ), a tributary of Mahakali, is a snow-fed watershed in Western Nepal. The

watershed has 14 hydropower projects at various stages of development. This study simulated the current and fu-

ture hydrological system of Chamelia using the Soil and Water Assessment Tool (SWAT). The model was calibrated

for 2001–2007; validated for 2008–2013; and then applied to assess streamflow response to projected future cli-

mate scenarios. Multi-site calibration ensures that the model is capable of reproducing hydrological heterogeneity

within the watershed. Current water balance above the Q120 hydrological station in the forms of precipitation, ac-

tual evapotranspiration (AET), and net water yield are 2469 mm, 381 mm and 1946 mm, respectively. Outputs of

five Regional Climate Models (RCMs) under two representative concentration pathways (RCPs) for three future pe-

riodswere considered for assessing climate change impacts. An ensemble of bias-corrected RCMprojections showed

thatmaximum temperature under RCP4.5 (RCP8.5) scenario for near-, mid-, and far-futures is projected to increase

from the baseline by 0.9 °C (1.1 °C), 1.4 °C (2.1 °C), and 1.6 °C (3.4 °C), respectively. Minimum temperature for the

same scenarios and future periods are projected to increase by 0.9 °C (1.2 °C), 1.6 °C (2.5 °C), and 2.0 °C (3.9 °C), re-

spectively. Average annual precipitation under RCP4.5 (RCP8.5) scenario for near-, mid-, and far-futures are

projected to increase by 10% (11%), 10% (15%), and 13% (15%), respectively. Based on the five RCMs considered,

there is a high consensus for increase in temperature but higher uncertainty with respect to precipitations. Under

these projected changes, average annual streamflowwas simulated to increase gradually from the near to far future

under both RCPs; for instance, by 8.2% in near-, 12.2% in mid-, and 15.0% in far-future under RCP4.5 scenarios. The

results are useful for planning water infrastructure projects, in Chamelia and throughout the Mahakali basin, to en-

sure long-term sustainability under climate change.
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1. Introduction

River basins across the globe are experiencing varying degrees of im-

pacts from climate change (Kim and Kaluarachchi, 2009; Zhu and

Ringler, 2012; Kure et al., 2013; Manandhar et al., 2013; Khadka et al.,

2014; Shrestha and Htut, 2016; Versini et al., 2016; etc.). Snow-fed wa-

tersheds are considered even more vulnerable (Barnett et al., 2005;

Immerzeel et al., 2013). The Intergovernmental Panel on Climate

Change (IPCC), based on Coupled Model Intercomparison Project

(CMIP5), has defined a series of Representative Concentration Pathways

(RCP) for future climate projections (VanVuuren et al., 2011). As per the

RCP scenarios, temperature is projected to risewith high confidence and

summer monsoon precipitation is projected to rise across South Asia

with medium confidence (IPCC, 2013). These changes may alter the hy-

drologic systems (Bolch et al., 2012) leading to (but not limited to) dis-

appearance of natural springs, loss or functional change in wetlands,

increased variability in streamflow, and glacier retreat (Bates et al.,

2008). This may consequently cause losses in transient groundwater

storage (Andermann et al., 2012), agricultural productivity and yield,

rural and urban livelihoods due to intermittent water supply, industrial

productivity, and overall economy (Dixit et al., 2009; WECS, 2011;

IWMI, 2014).

Water has been identified as the key resource for development and

economic growth of Nepal (WECS, 2011). Because of possible impacts

on future water availability and spatio-temporal distribution, climate

change (CC) is frequently discussed in national development discourse

in Nepal (Dixit et al., 2009). The climatic trends in Nepal reveal signifi-

cant warming in recent decades (Devkota and Gyawali, 2015) and CC

scenarios for Nepal across multiple general circulation models (GCMs)

show considerable convergence on continued warming, with averaged

mean temperature projected to increase by 1.2 °C and 3 °C by 2050

and 2100, respectively (World Bank, 2009). Studies in Nepalese basins

such as Koshi have shown a large increase in intra- and inter-annual

variability in climate and streamflows (Bharati et al., 2014, 2016). An-

other study (Manandhar et al., 2013) has shown that average annual

and seasonal streamflows are expected to increase with a rise in tem-

perature in the Kali Gandaki basin. As water is the crucial resource for

socio-economic development of Nepal, it is imperative to understand

likely impacts of CC on future water availability and incorporate them

in future water resource planning. However, studies on projected future

climate scenarios and associated impacts on spatio-temporal distribu-

tions and availability of water resources are limited, particularly in

western Nepal. This study therefore considers evaluating climate

change impacts on hydrological responses of Chamelia, a snow-fed trib-

utary at the headwaters of Mahakali River Basin in Western Nepal

(Fig. 1). This is the first study of this nature in the watershed, and it is

important especially given the context of several planned hydropower

projects.

The Mahakali basin, as delineated at a point (latitude = 28°28′42″;

longitude = 80°31′38″) below the Nepal-India border in the Digo Jal

Bikas Project, covers 17,377 km2 . Mahakali is a transboundary basin

with about two-thirds of the basin falling in India and the rest in

Nepal. The Mahakali river forms the border between India and Nepal

and then joins Ganges basin in India (Fig. 1). Chamelia is the largest wa-

tershed in the Nepalese side of the Mahakali Basin, covering an area of

1603 km2 . Any intervention in the form of water infrastructure or man-

agement is expected to have impacts on downstream communities in

both Nepal and India. Chamelia is also highly vulnerable to CC in com-

parison to other mid-hill watersheds in Nepal (Siddiqui et al., 2012).

Thewatershed has been a center for hydropower development in recent

Fig. 1. Topography, river network, hydro-meteorological stations, and planned hydropower projects in Chamelia watershed. Inset shows location of Chamelia in western Nepal. “*” rep-

resents hydropower projects in various stages of development, with symbol size indicating production capacity of hydropower projects in megawatts (MW).
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years. According to the data from Department of Electricity Develop-

ment (DoED) Chamelia has 14 hydropower projects in various stages

of development, with individual capacity ranging from 1 to 40 mega-

watts (MW), and a total capacity of 214 MW; 56.5 MW are either oper-

ational or under construction (IWMI, 2017). Some small-scale irrigation

projects also exist in the watershed. CC may affect various aspects of

such water infrastructure projects, all of which are manifested through

hydrological alterations. Though CC is already experienced in the South

Asian region (IPCC, 2013), no prior study has evaluated the extent of

change and consequences on water availability in the Chamelia water-

shed. A quantification of spatial and temporal change in water availabil-

ity across the basin is a key information to discuss implication of CC

across the multiple sectors under the Nepalese water-energy-food

nexus (Rasul, 2016).

This study aims to address this missing quantification of CC impacts

onwater availability in the Chameliawatershed, a tributary ofMahakali.

We have three-fold objectives: i) to assess current spatio-temporal var-

iations in water availability; ii) to project future temperature and rain-

fall; and iii) to assess the impacts of projected changes in temperature

and rainfall on water availability. We simulate the current hydrology

of Chamelia watershed using the Soil and Water Assessment Tool

(SWAT); project future climate based on multiple Regional Circulation

Models (RCMs); and then assess the response of the sub-watersheds

to projected climate. Specifically, projected temperature and rainfall

are generated using quantile mapping bias-correction of five RCM

outputs. Change in climate and water availability is evaluated for

three future periods: near-future (NF: 2021–2045), mid-future (MF:

2046–2070), and far-future (FF: 2071–2095),with respect to simulation

for the baseline (1980–2005).

2. Methodology and data

Overall methodological framework adopted in this study is depicted

in Fig. 2. Broadly, it consists of data preparation, model setup, model

calibration and validation, current hydrological characterization, future

climate projection, and CC impacts assessment on water availability

using the validated SWAT model. The methodology is elaborated in

the following sub-sections.

2.1. SWAT theory

SWAT is a process-based hydrological model that can predict

impacts of climatic and non-climatic changes on water, sediment and

agricultural chemical yields in complex basins with varying soils, land

use/cover and management conditions (Arnold et al., 1998; Srinivasan

et al., 1998). The main components of the model pertinent to hydrolog-

ical analysis include: climate, hydrology, plant growth, land manage-

ment, channel and reservoir routing.

Fig. 2. Methodological framework adopted in this study. Blue indicates processes related to hydrological modeling while orange indicates processes related to climate projection and

impacts. Both contribute to the end goal to evaluate climate change impacts shown in green. DEM is digital elevation model; LULC is land use/cover; P is precipitation; Tmax and Tmin

are maximum and minimum temperatures; RH is relative humidity; WS is wind speed; SR is solar radiation; RCP is representative concentration pathways; RCMs is regional climate

models; SWAT is soil and water assessment tool; NF is near-future; MF is mid-future; FF is far-future. (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)
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Conceptually, SWAT is semi-distributed and divides a basin into sub-

basins. Each sub-basin is connected through a stream channel and

further divided into Hydrologic Response Units (HRUs). HRU is a unique

combination of a soil, land use/cover (LULC) and slope type in a sub-

watershed. SWAT simulates hydrology, vegetation growth, and

management practices at the HRU level. The hydrological processes

explicitly modeled within each HRU are: soil water balance, surface

runoff, infiltration, evapotranspiration (ET), canopy storage, plant

uptake, percolation, return flow, recharge (shallow and deep aquifers),

lateral flow, seepage, baseflow (from shallow aquifer) and groundwater

pumping (Neitsch et al., 2011; Srinivasan, 2012). Since themodelmain-

tains a continuous water balance, the subdivision of the basin into

unique HRUs, enables it to reflect differences in evapotranspiration for

various LULCs and soils. Thus runoff is predicted separately for each

sub-basin and routed to obtain the total runoff at the basin outlets.

This provides a better physical description of the water balance.

Detailed descriptions of the model can be found in Arnold et al.

(1998), Srinivasan et al. (1998), and Neitsch et al. (2011).

2.2. Spatial data preparation

Three types of spatial data are required as input to SWATmodel: dig-

ital elevation model (DEM), LULC, and soil type. Spatial distribution in

topography in this study is represented by the Advanced Space borne

Thermal Emission and Reflection Radiometer (ASTER) Global Digital

Elevation Model Version 2 (GDEM V2) with 1-arc second resolution

(approximately 30 m at the equator) (NASA JPL, 2009). ASTER GDEM,

shown in Fig. 1, was jointly developed by the Ministry of Economy,

Trade, and Industry (METI) of Japan and the United States National

Aeronautics and Space Administration (NASA). A threshold area of

1000 ha was defined to create river network based on the ASTER

DEM. As per theDEM, topography across the Chameliawatershed varies

from 505 to 7090 m (Fig. 1).

The LULC in Fig. 3a is prepared based on a map from ICIMOD (2010).

There are nine LULC types in the study area. Forest (40%) and rainfed

agriculture (28%) are the dominant types accounting for more than

two-thirds of the Chamelia watershed (Fig. 3a). Snow/glacier covers

6.3% of the watershed.

The soil type data is prepared based on the data developed by SOTER

program (Dijkshoorn and Huting, 2009). There are seven types of soil in

the watershed (Fig. 3b); the dominant among them are Eutric Regosols

(23.8%), Eutric Cambisols (24.5%), and Gelic Cambisols (22.0%). The

properties of each soil type are defined by hydraulic conductivity, ap-

pearance and depth.

2.3. Time series data preparation

There are no meteorological stations within the study watershed.

Meteorological data from three stations close to the study watershed

(Fig. 1) were obtained from the Department of Hydrology and Mete-

orology (DHM). Discharge data are available at three stations located

within the catchment (Fig. 1). Rainfall and temperature data were

formatted as per SWAT's input template and were used in the origi-

nal units of mm and ° C. SWAT requires daily relative humidity in

fraction, however, two sets of observed data per day (morning and

evening) were available in percentage. The average of the two data

was taken and converted into fraction. SWAT requires solar radiation

in MJ/m2 /day but observations are available in sunshine hours. The

conversion from sunshine hours to solar radiation (MJ/m2 /day)

was made using the Angstrom-Prescott (AP) model (Allen et al.,

1998). SWAT requires wind speed in m/s, however, observed data

were available in km/h. They were converted into m/s. All time-series

data were quality checked for extent of missing values, typographic is-

sues and coding errors. Overlaps in timeframes across all datasets

were assessed to identify calibration and validation periods as periods

with the best observed data.

2.4. SWAT model setup

ArcSWAT2012 was used as the interface to setup the model for

Chamelia. To better represent heterogeneity, the watershed was

discretized into 16 sub-watersheds as shown in Fig. 1. The watersheds

were further discretized into 225 HRUs. The average size of the

sub-watershed is 100.2 km2 , varying from 33.2 to 233.5 km2 .

Multiple HRUs were defined using LULC (2%), soil type (5%) and

slope (10%). Slopes for the purpose of defining HRUs were divided

into four classes (0–3%; 3–15%; 15–30%; and N30%). Ten elevation

bands, at intervals of 500 m, were defined to model the process

of snowmelt and orographic distribution of temperature and

precipitation. Weather input was fed in the form of daily rainfall

(3 stations), maximum and minimum temperatures (2 stations),

relative humidity (2 stations), wind speed (1 station) and sunshine

hours (1 station) (Table 1). Daily time series of weather were used.

SCS curve number method was used to estimate surface runoff,

where daily curve number is estimated based on a function of soil

moisture. The Penman-Monteith method was used to estimate

potential evapotranspiration (PET). Variable storage method was

applied to route flow in the channels. No point discharge was

defined.

Fig. 3. Spatial distribution in – a) land use/cover, and soil type (b) – within Chamelia.
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2.5. Model calibration and validation

Calibration is the parameterization of a model to a given set of con-

ditions, thereby reducing the prediction uncertainty (Arnold et al.,

2012). SWAT model for Chamelia watershed was calibrated and vali-

dated at three hydrological stations (Table 1; Fig. 1) with daily observed

streamflow data. The multi-site calibration approaches are considered

as better one against the single site calibration as demonstrated in

Hasan and Pradhanang (2017). The hydrological data at the three

stations were evaluated using exploratory analysis tools such as

hydrographs, mass curves, and data reading. Data availability varied at

each station so periods with consistent and good quality data with no

or negligible missing data were identified for each station indepen-

dently. At stations Q120 and Q115, timeframe of 2001–2013 was

selected with calibration and validation periods of 2001–2007 and

2008–2013, respectively. At Q125, 2001–2009 was selected with

calibration and validation periods of 2001–2005 and 2006–2009, re-

spectively. Awarmupperiod of 3 yearswasused to develop appropriate

soil and groundwater conditions before calibration (Fontaine et al.,

2002). The model was calibrated in three stages: i) Sensitivity analysis,

ii) Auto-calibration in SWAT-CUP, and iii) manual calibration. Sensitiv-

ity was analysed using global sensitivity approach, wherein, one

parameter value is changed at a time while keeping others constant.

Auto-calibrationwas run for 1000 iterationswith parameter ranges rec-

ommended in SWAT documentations (Neitsch et al., 2011). Although

the range of values for the sensitive parameters was narrowed down

during auto-calibration, the simulated and observed hydrographs did

not match well. Then manual calibration was performed on the results

of the auto-calibration by tweaking relevant model parameters to

match the simulated hydrograph to the observed.

During manual calibration, adjustments were initially made to the

most sensitive parameters and then to the less sensitive ones. Parame-

ters other than those identified during the sensitivity analysis were

also adjusted for more realistic values leading to better performance of

the model. Visual inspection of the hydrographs (peaks, time to peak,

shape of the hydrograph and baseflow); scattered plots; flow duration

curve; statistical parameters; and water balance comparison (observed

verses simulated) at daily, monthly and annual scales were used as the

basis for evaluating model performance. Following statistical parameters

were considered for performance evaluation: coefficient of determina-

tion (R2 ), Nash-Sutcliffe efficiency (NSE), percent bias (PBIAS), and

change in mean values. Details of these methods are available in Nash

and Sutcliffe (1970), Gupta et al. (1999), and Moriasi et al. (2007). The

model performance was evaluated for both monthly and daily simula-

tions. Due care was given to keep physically based parameters within a

reasonable range (Table 4) throughout the calibration process.

2.6. Uncertainty assessment

Predictive uncertainty was assessed using SUFI-2 algorithm

(Abbaspour et al., 2007), which defines uncertainty as the discrepancy

between measured and simulated variables. The predictive uncer-

tainties reflect all sources of uncertainty, i.e. conceptual model, forcing

inputs (e.g. rainfall), and parameter (Rostamian et al., 2008). The

uncertainty of input parameters in SUFI-2 is depicted as a uniform

distribution, while model output uncertainty is quantified using 95%

prediction uncertainty (95PPU) band and associated measures

(i.e., p-factor and r-factor). The p-factor is the percentage of data

bracketed in the 95PPU band and measures the portion of uncertainty

the model is capturing. The r-factor, calculated as a ratio of mean

width of the 95PPU band and standard deviation, on the other hand,

captures the goodness of calibration; smaller the 95PPU band better

the calibration result. The 95PPU plot, p-factor and r-factor were ob-

tained using SWAT-CUP.

2.7. Future climate projections

The IPCC represent possible futures in the form of representative

concentration pathways (RCPs). Four RCP pathways are developed for

the climate modeling community as a basis for long-term and near-

term modeling experiments. They are RCP2.6, RCP4.5, RCP6.0, and

RCP8.5 (Van Vuuren et al., 2011). It is the innovative collaboration be-

tween integrated assessment modelers, climate modelers, terrestrial

ecosystem modelers and emission inventory experts. RCM outputs are

generally only available for RCP4.5 and 8.5 and occasionally for

RCP2.6. In this study, RCP4.5 is selected as amedium stabilizing scenario

and RCP8.5 as a very high emission scenario. RCP4.5 refers to stabiliza-

tion without overshoot pathway leading to 4.5 W/m2 (~650 ppm CO2)

at stabilization after 2100; where as RCP8.5 refers to rising radiative

forcing pathways leading to 8.5 W/m2 (~1370 ppm CO2) by 2100.

Outputs from five RCMs (Table 2) were used in this study as repre-

sentative future climates. They are combinations of four unique Global

Circulation Models (GCMs) downscaled dynamically by three unique

RCMs. Three CCAM models and one REMO model were selected based

on review of past studies in South Asia (Saeed and Suleri, 2015; Li

et al., 2016; Mukherjee et al., 2017). Additionally, the ICHEC-RCA4

model was selected as it showed closest correspondence to observed

precipitation in rigorous assessment of the past performance of 11

RCMs for in the Hindu Kush Himalayas carried out by Ghimire et al.

(2015). The five RCMs and their un-weighted average ensemble were

used as future climate inputs. Using such multi-model ensembles can re-

duce the overall uncertainty in model predictions (Scinocca et al., 2015).

Precipitation data from ICHEC-RCA4 and REMO were in kg/m2 /s unit,

which were converted into millimeters (mm) before further use. For

RCMs with 365-day calendars, an additional day in leap years was filled

with data from the preceding day. RCM gridded data were processed

using the Climate Data Operators (CDO). Future climate time series

(daily precipitation and min/max temperature) were extracted from

these RCMs at the three meteorological stations.

Bias correction of raw RCM outputs is highly recommended for hy-

drological applications, especially for applications at finer spatial scales

(Teutschbein and Seibert, 2012; Wilby, 2010; Wood et al., 2004). A

paper comparing multiple bias correction methods considering outputs

ofmultiple RCMs for Western Nepal undertaken by the authors is under

development. Quantile mapping (QM) has emerged as a better tech-

nique for bias correction for improving the past performance of RCMs

Table 1

Description of hydro-meteorological data used in this study.

Index Lat. Lon. Elevation (masl) S. name River Drainage (km2 ) Variables Duration

115 29.702 86.607 784 Harsing Bagar Naugraha Gad 203 Q 2001–2013

120 29.672 80.558 724 Karkale Gaon Chamelia River 1150 Q 2001–2013

125 29.638 80.514 580 Panjewanya Jamari Gad 228 Q 2001–2009

103 29.467 80.533 1266 Patan (West) – – P, T, RH 2001–2013

104 29.300 80.583 1848 Dadeldhura – – All 2001–2013

201 29.617 80.867 1456 Pipalkot – – P 2001–2013

Note:masl is “meters abovemean sea level”; Index is “station number of Department of Hydrology and Meteorology, Nepal”; Lat. Is “latitude”; Lon. Is “longitude”; S. is “station”; Q is “river

discharge”; P is “precipitation”; T is “temperature”; RH is “relative humidity”; all means all five meteorological variables (P, T, RH, sunshine hours, and wind speed).
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(Berg et al., 2012; Chen et al., 2013; Lutz et al., 2016; Teutschbein and

Seibert, 2012). This study considers future climate data at three meteo-

rological stations bias-corrected using QM method (Gudmundsson

et al., 2012).

QM corrects quantiles of raw RCM data to match with that of ob-

served ones using transfer functions. When the distribution is expected

to change (i.e., more extreme rainfall events, change in wet/dry days),

extra complexity is warranted in bias-correction, and so the choice

of QM is necessary at finer (e.g., daily) resolutions (Shrestha et al.,

2017a, b). Both distribution-based and empirical QM are used in

correcting precipitation and temperature. In this study, empirical QM

was implemented in R using Gudmundsson et al.'s (2012) qmap

package, where regularly spaces quantiles are approximated by linear

functions.

2.8. Climate change impact assessment

The calibrated and validated SWAT model was forced with the bias

corrected projections for daily precipitation and temperatures (maxi-

mum and minimum). Simulations of futures were undertaken based

on five RCM outputs as well their ensemble. The ensemble inputs

were prepared by taking an average of the five selected RCMs for each

daily time step. Studies comparing past-performance of RCMs for the

South Asian domain find that multi-modal ensembles often perform

better than individual RCMs with lower biases and standard deviations

(Choudhary and Dimri, 2017; Ghimire et al., 2015; Sanjay et al., 2017).

IPCC reports (Knutti et al., 2010a; Knutti et al., 2010b; Wilby, 2010)

also encourage thoughtful usage of multi-modal ensembles.

With two RCPs and five RCMs and an ensemble, 12 different future

scenarios were generated and run in the SWAT model. The simulated

streamflows based on the future projection were then synthesized in

terms of long-term annual average and seasonal values for the three fu-

ture periods: near-future (2021–2045), mid-future (2046–2070), and

far-future (2071–2095). Finally, change in streamflow at annual and

seasonal scales with respect to simulated baseline values are reported

as an impact of CC on water resources availability. To characterize spa-

tial variation, change in sub-basin level values of key water balance

components is also shown.

2.9. Data and sources

Spatial and time-series data reflecting biophysical, hydro-climatic

and future climatic contexts required in this study were collected from

local and global sources. Information related to existing and planned

water infrastructures within the watershed were obtained from litera-

ture. The details of data required by SWAT, their description, and

sources are provided in Table 3 below.

3. Results and discussion

3.1. Hydrological model development

A hydrological model for Chamelia was set up, calibrated and vali-

dated in SWAT. Model parameters related to runoff, evapotranspiration,

groundwater and soil water were adjusted to represent observed hy-

drological patterns at the three hydrological stations shown in Fig. 1.

Table 3

Data and sources used in this study.

Dataset [unit] Data type Data description/properties Data source Resolution (time frame)

Terrain [m] Spatial grids Digital elevation model (DEM) NASA JPL (2009) 30 m × 30 m grids (for 2009)

Soil [–] Spatial vectors Soil classification and physical properties

(e.g., texture, porosity, field capacity, wilting point,

saturated conductivity and soil depth)

Dijkshoorn and Huting

(2009)

1:1 million map (from multiple years)

Land use/cover (LULC)

[–]

Spatial grids Landsat land use/cover classification (9 classes) ICIMOD (2010) 30 m × 30 m grids (for 2010)

Precipitation [mm] Time-series Daily observed precipitation Department of Hydrology and

Meteorology (DHM), Nepal

3 stations (2001–2013)

Temperature [°C] Time-series Daily observed minimum and maximum

temperature

DHM, Nepal 2 stations (2001–2013)

Relative humidity [–] Time-series Daily observed mean relative humidity DHM, Nepal 2 stations (2001–2013)

Sunshine hours [h] Time-series Daily observed sunshine hours DHM, Nepal 1 stations (2001–2013)

Wind speed [m/s] Time-series Daily observed mean wind speed DHM, Nepal 1 stations (2001–2013)

River discharge [m3 /s] Time-series Daily observed streamflow DHM, Nepal 3 stations (2001–2013)

Future precipitation

[mm]

Temperature [°C]

Time-series

extracted from

spatial grids

Daily projected values 5 Regional Climate Models

detailed in Table 2

0.44° × 0.44° (1970–2100)

Table 2

Description of RCMs considered in this study.

SN Unique name CORDEX South Asia RCM RCM description (source) Contributing CORDEX modeling center Driving GCM Calendar Unit: P [T]

1 ACCESS_CCAM CSIRO-CCAM-1391 M ConformalCubi Atmospheric

Model - CCAM (McGregor and

Dix, 2001)

Commonwealth Scientific and Industrial

Research Organisation (CSIRO)

ACCESS1.0 365 days mm [K]

2 CNRM_CCAM CSIRO-CCAM-1391 M ConformalCubi Atmospheric

Model - CCAM (McGregor and

Dix, 2001)

Commonwealth Scientific and Industrial

Research Organisation (CSIRO)

CNRM-CM5 365 days mm [K]

3 MPI.ESM_CCAM CSIRO-CCAM-1391 M ConformalCubi Atmospheric

Model - CCAM (McGregor and

Dix, 2001)

Commonwealth Scientific and Industrial

Research Organisation (CSIRO)

MPI-ESM-LR 365 days mm [K]

4 MPI.E.MPI_REMO MPI-CSC-REMO2009 MPI Regional model 2009

(Teichmann et al., 2013)

Climate Service Center (CSC), Germany MPI-ESM-LR 366 days kg/m2 /s [K]

5 ICHEC_RCA4 SMHI-RCA4 Rossby Centre regional

atmospheric model version 4

-RCA4 (Samuelsson et al., 2011)

Rossby Centre, Swedish Meteorological

and Hydrological Institute (SMHI), Sweden

ICHEC-EC-EARTH 366 days kg/m2 /s [K]

Note: P is precipitation; T is temperature; RCM is regional circulation model; GCM is Global Circulation Model; CORDEX is coordinated regional climate downscaling experiment.

370 V.P. Pandey et al. / Science of the Total Environment 650 (2019) 365–383



The calibrated parameters are shown in Table 4. Sensitive parameters

were not consistent throughout the sub-watersheds. However, the run-

off curve number (CN2), groundwater delay (GW_DELAY) and baseflow

recession factor (ALPHA_BF) were among the most sensitive parame-

ters at all three stations, albeit with varying levels of influence.

The default values of SWAT parameters underestimated the

baseflow in most cases. Therefore, CN2, one of the sensitive parameters

that plays a key role in increasing the infiltration and subsequently the

groundwater contribution to baseflow, was fine-tuned. The value of

ALPHA_BF, which affects the shape of the receding limb of hydrograph,

was changed based on visual assessment of the slope of the receding

limb. Similarly, other flow related parameters such as soil evaporation

compensation factor (ESCO), threshold depth of water in the shallow

aquifer to trigger return flow (GWQMN), soil depth (SOL_Z), available

water capacity of the soil (SOL_AWC), saturated hydraulic conductivity

(SOL_K), effective hydraulic conductivity in main channel (CH_K2), lat-

eral flow travel time (LATTIME), and channel Manning's number

(CH_N2), among others, were adjusted to not only match the simulated

and observed flows at daily and monthly scale but also to reasonably

approximate the water balance components. Defining elevation bands

allowed for variable temperature laps rate (TLAPS),whichplayed an im-

portant role in replicating the spatial distribution of temperature, as

seen in other studies as well (e.g., Rahman et al., 2012).

3.1.1. Model performance

Results show a good agreement between the simulated and ob-

served streamflow values at all the three hydrological stations for both

calibration and validation periods (Figs. 4–6). The model simulates rea-

sonably well the hydrological regime for daily as well as monthly flows,

reproducing flow duration curve (FDC), and keeping statistical parame-

ters within reasonable range (Figs. 4–6) as discussed in Liu and de

Smedt (2004) and Moriasi et al. (2007). Additionally, the hydrological

response pattern follows the rainfall pattern at all the stations, for

both daily and monthly simulations. As can be expected monthly simu-

lation has better performance compared to daily. Difference between

observed and simulated average annual values for calibration, valida-

tion and overall (calibration + validation) periods are b15% at all

three stations (Table 5). Based on the general performance ratings

Table 4

Calibrated SWAT parameters at three hydrological stations (in decreasing order of sensitivity).

Station (river) Parameter Definition Unit Process (data file)a Levela Recommended

range

Default

value

Calibrated

value

Karkale Gaon

(Chamelia),

Q120

CN2 SCS runoff curve number for moisture

condition II

– Runoff (.mgt) HRU 35–98 Varies 1.2 (ratio)

CANMX Maximum canopy storage mm Runoff (.hru) HRU 0–100 0 98

CH_N1 Manning's “n” value for the tributary

channel

– Runoff (.sub) Sub-basin 0.01–30 0.014 0.5

ESCO Soil evaporation compensation factor – Evaporation (.hru) HRU 0–1 0.95 0.2

GW_DELAY Delay time for aquifer recharge days Groundwater (.gw) HRU 0–500 31 5

CH_N2 Manning's “n” value for the main channel – Channel (.rte) Reach 0–1 0.014 0.15

CH_K2 Effectivity hydraulic conductivity in main

channel alluvium

mm/h Channel (.rte) Reach 0–500 0 300

TLAPS Temperature lapse rate °C/km Topographic effect (.sub) Sub-basin −10–10 −5.6 −7.9

ALPHA_BF Baseflow recession constant days Groundwater (.gw) HRU 0–1 0.048 0.25

LAT_TTIME Lateral flow travel time days HRU (.hru) HRU 0–180 0 80

SOL_K Saturated soil conductivity mm/h Soil (.sol) HRU 0–2000 Varies 0.2 (ratio)

SOL_Z Depth from soil surface to bottom of layer mm Soil (.sol) HRU 0–3500 Varies 2 (ratio)

Harsing Bagar

(Naugraha Gad),

Q115

CN2 SCS runoff curve number for moisture

condition II

– Runoff (.mgt) HRU 35–98 Varies 1.15 (ratio)

ESCO Soil evaporation compensation factor – Evaporation (.hru) HRU 0–1 0.95 0.4

CH_K2 Effectivity hydraulic conductivity in main

channel alluvium

mm/h Channel (.rte) Reach 0–500 0 450

ALPHA_BF Baseflow recession constant days Groundwater (.gw) HRU 0–1 0.048 0.2

CH_N2 Manning's “n” value for the main channel – Channel (.rte) Reach 0–1 0.014 0.2

TLAPS Temperature lapse rate °C/km Topographic effect (.sub) Sub-basin −10–10 −5.6 −9.5

LAT_TTIME Lateral flow travel time days HRU (.hru) HRU 0–180 0 30

SOL_K Saturated soil conductivity mm/h Soil (.sol) HRU 0–2000 Varies 0.5 (ratio)

SOL_AWC Available water storage capacity of the soil

layer

– Soil (.sol) HRU 0–1 Varies 0.5 (ratio)

SOL_Z Depth from soil surface to bottom of layer mm Soil (.sol) HRU 0–3500 Varies 2.0 (ratio)

GW_DELAY Delay time for aquifer recharge days Groundwater (.gw) HRU 0–500 31 90

CANMX Maximum canopy storage mm Runoff (.hru) HRU 0–100 0 80

EPCO Plant uptake compensation factor – Evaporation (.hru) HRU 0–1 1 0.6

OV_N Manning's n value for overland flow – HRU (.hru) HRU 0.01–30 Varies 0.16 (ratio)

Panjewanya

(Gamari Gad),

Q125

GW_DELAY Delay time for aquifer recharge days Groundwater (.gw) HRU 0–500 31 60

TLAPS Temperature lapse rate °C/km Topographic effect (.sub) Sub-basin −10–10 −5.6 0

SOL_Z Depth from soil surface to bottom of layer mm Soil (.sol) HRU 0–3500 Varies 2.0 (ratio)

GWQMN Threshold depth of water in shallow

aquifer to occur groundwater return flow

mm Soil (.gw) HRU 0–5000 1000 4900

ESCO Soil evaporation compensation factor – Evaporation (.hru) HRU 0–1 0.95 0.99

CN2 SCS runoff curve number for moisture

condition II

– Runoff (.mgt) HRU 35–98 Varies 0.98 (ratio)

CH_K2 Effectivity hydraulic conductivity in main

channel alluvium

mm/h Channel (.rte) Reach 0–500 0 450

ALPHA_BF Baseflow recession constant days Groundwater (.gw) HRU 0–1 0.048 0.2

LAT_TTIME Lateral flow travel time days HRU (.hru) HRU 0–180 0 40

SOL_K Saturated soil conductivity mm/h Soil (.sol) HRU 0–2000 Varies 0.15 (Ratio)

CH_N2 Manning's “n” value for the main channel – Channel (.rte) Reach 0–1 0.014 0.15

EPCO Plant uptake compensation factor – Evaporation (.hru) HRU 0–1 1 0.2

SHALLST Initial depth of water in shallow aquifer mm Groundwater (.gw) HRU 0–50,000 1000 300

a For detailed explanation of the parameters, please refer to Arnold et al. (2012). Recommended and default values are as per SWAT documentation (Neitsch et al., 2011).
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criteria developed by Moriasi et al. (2007), for both monthly and daily

time steps, model calibration results are “very good (NSE N 0.65)” for

the stations Q120 and Q115 and “adequate (NSE = 0.54 to 0.65)” for

the station Q125. For the validation period, the daily and monthly NSE

range between 0.33 to 0.65 and 0.68 to 0.81 across the three stations,

with relatively poorer performance at Q115.

A closer look into the hydrographand scatter plots during calibration

indicates that the model estimates low flows and long-term average

reasonably well for both daily and monthly simulations. However, the

scatter points are spread out further for high flows indicating that the

model is poorer at simulating high peaks (or high flows). The equation

of the linear fit shows that model is under-estimating flow at both daily

and monthly scale. During validation, the scatter plot shows higher

spread even for average-flows indicating that the model performance

is poor for both high-flows as well as average flows even if low flow is

reasonably reproduced. Overall, the model is better suited for low-

flows estimation andwater resources assessment and needs further cal-

ibration for use in flood-forecasting and extreme analysis. As the goal of

this modeling is to assess water availability and its distribution in the

long run, the model is considered adequate to serve the purpose.

Observed variation in performance across the hydrological stations

can partly be attributed to limitations in the hydro-meteorological in-

puts. Studies have identified spatial variability in errors in rainfall,

streamflow, soils map, and land use/cover inputs caused by various rea-

sons, including poor sampling strategies. In this study, none of the se-

lected meteorological stations lie directly inside Chamelia watershed.

To account for variation in topography among the meteorological

stations and within Chamelia watershed, values of meteorological

variables were distributed spatially and topographically by assigning

elevation bands in SWAT. Ten elevation bands, at intervals of 500 m,

were defined to model the process of snowmelt and orographic distri-

bution of temperature and precipitation. Of the three hydrological sta-

tions, st120 lies on the main stem of Chamelia, covering most of the

watershed, and shows the best performance. Stations st115 and st125,

on the other hand, are 1st order tributaries and drain smaller sub-

watersheds within Chamelia. Therefore, streamflows generated at

these stations will be more sensitive to errors in meteorological inputs,

contributing to the poorer model performance.

In addition, accurate information on the snow and glaciers, coverage

area, depth, and depletion rate is not available for the high altitude areas

in the watershed. Considering potential uncertainties and limitations in

the input data, the performance of the model in calibration and valida-

tion can be considered acceptable to simulate streamflow in the water-

shed. As seen in Fig. 1, most licensed hydropower projects lie upstream

of the st120 station. The “very good” model performance at this station

is key for assessment of impact due to these projects. Multi-site calibra-

tion (at three hydrological stations) assures that the model is capable of

reproducing hydrological heterogeneitywithin the Chameliawatershed

with higher reliability at stations of greater importance.

3.1.2. Predictive uncertainty of the model

Uncertainty is an inherent part of hydrological modeling (Latif,

2011) due to input data, model structure, and model parameters,

among others (Leta et al., 2015). Exploratory data analysis was used to

help reduce uncertainties in input data. This study adopted SUFI-2 algo-

rithm, plotted 95PPU band, and then quantified the predictive uncer-

tainty using p-factor and r-factor as described in Abbaspour et al.

(2007). Other studies such as Rostamian et al. (2008), Shrestha et al.

Fig. 4. Comparison of observed versus simulated stream flows at Karkalegaon (Index = Q120; River = Chamelia) station: a) Hydrograph for daily simulation, b) hydrograph for monthly

simulation, c & d) scattered plots for daily calibration and validation, e & f) scattered plots for monthly flow calibration and validation, g) flow duration curve (FDC, daily).
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(2017a), Shrestha et al. (2017b) and Krishnan et al. (2018) have also

used similar approach. The ideal model would have a p-factor ap-

proaching to 100%, i.e. all observed data fall within the 95PPU band,

and r-factor approaching to zero, i.e. predictive uncertainty is less than

variability in observed data. Generally, higher p-factor can be obtained

with an increased r-factor aswider bandwidths aremore flexible to cap-

ture observed variations. But higher bandwidth indicates higher predic-

tive uncertainties. The r-factor of less than one generally indicates a

good calibration (Rostamian et al., 2008).

The daily hydrographs with 95PPU bands for all the three stations

are shown inAnnex-1. The 95PPUband iswidest for Q120withmajority

of the observations covered. At stations Q115 and Q125, the 95PPU

bands are much narrower specially for high flow period. Both the p-

and r-factors for the calibration at Q120 (catchment = 1150 km2 )

were 0.91 and 0.79, respectively. It means 91% of the observed data

points are within the 95PPU simulation bands and therefore the

model predictions capture observations well. Similarly, for Q115

(catchment = 203 km2 ), the p- and r-factors are 0.76 and 0.52. For

Q125 (catchment = 228 km2 ), p- and r-factors are 0.68 and 0.46, re-

spectively. While Q115 and Q125 have lower prediction uncertainties

than Q120, their ability to simulate observed data is low. Overall at the

three stations (Q115, Q120, and Q125), the r-factor is in a range of

0.46–0.79 and p-factor in a range of 0.68–0.91. The model is therefore

considered well calibrated and reasonably captures uncertainties.

More aggressive methods for disaggregating and quantifying the

contribution of various sources (structure, parameter, input) towards

total predictive uncertainty exist (Saltelli et al., 2006). However, all

input datasets have limitations due to data availability quality, length

and resolution. Observed hydro-meteorological data for Chamelia is

only of acceptable quality for 12 years and none of the meteorological

stations used are physically within the basin as shown in Fig. 1. Spatial

data sets are coarse, often remotely based with limited field based ver-

ification. Hence input data uncertainty is potentially larger than param-

eter uncertainty. The lack of longer and higher quality observed datasets

is a key barrier that did not provide a sufficient basis for a more rigorous

analysis of propagation of input errors in the model and subsequent

evaluation of model structure and parameter uncertainty. Hence only

the standard SUFI-2 approachwas used here to evaluate total predictive

uncertainty.

3.2. Characterization of current hydrology

Current hydrology of the Chamelia watershed was characterized

using simulated results from the SWAT model developed in this study.

Four major hydrological components were considered for the analysis,

namely, precipitation, actual evapotranspiration (ET), net water yield

and the change in storage (Δ storage). The ‘Δ storage’ is a collective

term including groundwater recharge, change in soil moisture storage

in the vadose zone and other transmission losses in the system. Net

water yield is the streamflow generated at the sub-basin outlet.

Streamflow is the sum of surface runoff, lateral flow, and groundwater

flow, with deductions for losses and abstractions.

Annual average precipitation, actual ET and net water yield of the

basin at Q120 station for the simulation period (2001–2013) were

2469 mm, 381 mm and 1946 mm, respectively. The values, however,

vary within each sub-basin (Fig. 7; please refer Fig. 1 for the sub-

basins location). There is spatial heterogeneity in all the water balance

components (Fig. 7). Net water yield shows a minimum value of

Fig. 5. Comparison of observed versus simulated stream flows at Harsing Bazar (Index = Q115; River = Naugraha Gad) station: a) Hydrograph for daily simulation, b) hydrograph for

monthly simulation, c & d) scattered plots for daily calibration and validation, e & f) scattered plots for monthly flow calibration and validation, g) flow duration curve (FDC, daily).
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589mmin the sub-basin 16, a tributary joining Chamelia near the outlet

of the watershed and the maximum of 2152 mm in sub-basin 6, a trib-

utary joining Chamelia near headwaters of the watershed (see Fig. 1 for

sub-basin locations). Net water yield is greater than actual ET in most of

the sub-basins in the upstream, represented by low sub-basin numbers.

Low ET is reasonable as these sub-basins lie at higher elevations

with low temperature. As ET depends largely on precipitation, land

use/cover and temperature, it was estimated higher in forested areas.

In case of actual ET, sub-basin 1 has the minimum value of 9 mm and

sub-basin 11 has the highest values of 766 mm. Precipitation contrib-

utes to storage only in upstream basins in steep terrain while in

downstream basins, storage contributes a baseflow. This indicates that

aquifer recharge is largely happening in the hills. Furthermore, water-

sheds with more snow cover in upstream showed lower contribution

of baseflow than other watersheds, which is consistent with literatures

(e.g., Hasan and Pradhanang, 2017). On the other hand, watersheds in

the downstream show more contribution from baseflow, which is likely

due to interflow of water infiltrated in the upstream. These discussions

indicate that the hydrological characteristics simulated by themodel are

reasonable.

Additionally, Fig. 8 shows a large temporal variation in thewater bal-

ance components in the Chameliawatershed.Netwater yield and actual

ET are highest in the monsoon season and lowest in the dry season, as

expected. ‘Δ storage’ is negative in monsoon with−134.5 mm in July

(the wettest month) indicating recharge and positive in the dry season

with 43.5 mm in December indicating groundwater contribution to

streamflow. Relatively large value of the ‘Δ storage’ in monsoon season

could be attributed to high groundwater recharge, which ultimately

yields to high groundwater contribution to streamflow during the dry

periods.

3.3. Future climate projection

Raw projections extracted from the five selected RCMs for historical

baseline (1980–2005) are presented in Annex-2. The raw data for both

maximum and minimum temperatures showed under-estimation

throughout the year. In case of maximum temperature, there was slight

over-estimation for the moths of March, April, May and June. In case of

precipitation, the rawRCMdata showed over-estimation formost of the

months, except February, March, and April (Annex-2. B). The raw RCM

Fig. 6. Comparison of observed versus simulated stream flows at Panjewanya (Index = Q125; River= Jamari Gad) station: a) Hydrograph for daily simulation, b) hydrograph for monthly

simulation, c & d) scattered plots for daily calibration and validation, e & f) scattered plots for monthly flow calibration and validation, g) flow duration curve (FDC, daily).

Table 5

Comparison of mean and standard deviations of observed and simulated average annual

streamflows.

Station index Period Mean streamflow

(m3 /s)

Standard deviation

(m3 /s)

Obs. Sim. % Diff. Obs. Sim. Diff.

st115 Calibration 13.29 13.63 2.6 2.5 1.7 −0.8

Validation 17.55 15.13 −13.8 4.8 2.1 −2.7

Overall 15.11 13.46 −10.9 3.6 2.6 −1.0

st120 Calibration 62.12 65.3 5.1 4.8 2.9 −1.9

Validation 70.94 64.39 −9.2 7.0 6.0 −1.0

Overall 66.19 64.88 −2.0 7.3 10.5 3.2

st125 Calibration 6.84 7.62 11.4 1.8 1.2 −0.6

Validation 9.05 8.35 −7.7 2.0 2.1 0.1

Overall 7.82 7.95 1.7 2.1 1.6 −0.5

Notes: Obs. is observed; Sim. is simulated; Diff. is difference.
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daily projections were bias-corrected using quantile-mapping method

to remove seen biases. The statistical parameters before and after bias-

correction at climate station st103 are shown in Annex-3. Comparative

plots and performance statistics show that R2 is improved to a great ex-

tent by bias correction. For ensemble outputs as an example, R2 values

have increased from−1.67 to 0.65 for precipitation, from 0.37 to 0.90

formaximum temperature, and from0.59 to 0.95 forminimum temper-

ature. Other statistical indicators have also improved to a reasonable

level after bias correction (Annex-3).

Projected precipitation and min/max temperature extracted at

the three selected meteorological stations from five RCMs (Table 3)

under RCP4.5 and RCP8.5 scenarios were bias-corrected. Three future

timeframes were considered: near future (NF, 2021–2045), mid-future

(MF, 2046–2070), and far-future (FF, 2071–2095). The period of

1980–2005was considered as climate baseline. The future climate projec-

tions are discussedhere are based on thedownscaledRCMvalues at ame-

teorological station (Index=103) because of proximity to thewatershed.

3.3.1. Projected precipitation

Annual total precipitation for the climate baseline and future periods

show no obvious trend (Fig. 9). Projected range of annual total precipi-

tation for the three future periods are 1080–1732 (NF); 821–2560 mm

(MF); and 670–1743 mm (FF); respectively. It indicates an increase in

the uncertainty range when we progress further with the future.

The range of changes in projected total precipitation by the five

RCMs is presented in Fig. 10. It is clear that the annual ranges are not

representative of the seasonal changes as the negative and positive

changes across the seasons are averaged out in the annual values. As

can be expected, the three CCAM models based on the same dynamic

downscaling show similar behaviours and ranges. Studies have shown

that precipitation trends in RCMs are dominated by the driving RCMs

rather than the driving GCMs in South Asia (ul Hasson, 2016).

ICHEC_RCA4 shows high spread in predictions with wet bias while the

REMO model appears to predict drier conditions. This is in line with

finding from Ghimire et al. (2015), where South Asian RCMs show pos-

itive wet bias for mid elevations. However, the medians for most cases

in Fig. 10 lie within the ±50% range, suggesting that the RCMs predict

increase in annual precipitation for some years and decrease in others.

For these cases, medians (line in the box plot) and the means (x in the

box plot) lie close to each other and close to the 0 line for the pre-

monsoon and monsoon months. Such a lack of skewness in data

indicates that increase and decrease in precipitation are projected

equally across the years for DJF, MAM, JJAS. For post-monsoon months

(ON), medians lie below the means indicating the projections are nega-

tively skewed.

Considering the range of predictions as ameasure of uncertainty, the

annual and monsoon (JJAS) precipitations show the least uncertainty.

Post-monsoon (ON) precipitation shows the high level of uncertainty

for all the scenarios and futures considered. Even the projections by dif-

ferent RCMs do not vary much for the annual and monsoon season pro-

jections but vary significantly for other seasons. The higher prediction

range indicates a more erratic behaviour of rainfall and its intensity at

a seasonal scale. It should be additionally noted that the use of three

CCAM-based models is bound to highlight the trends seen in CCAM

model as more likely. A higher number and variety of RCMs would

allow for an objective discussion of uncertainty and consensus in pre-

dictions seen across RCMs.

Table 6 summarizes the projected changes in average annual and

seasonal precipitation values for RCP4.5 and RCP 8.5 scenarios based

on the ensemble of five RCMs. Average annual values are projected to

increase consistently over three future periods, however, the rate of

change varies over the years (Table 6). Taking an example of RCP4.5 sce-

narios, average annual precipitation is projected to increase by 10% in

NF and 13% in FF; however, it varies over the years from −10 to 30%

Fig. 7. Sub-basin wise long-term annual average water balance from SWAT model simulations (2001–2013) in Chamelia. See Fig. 1 for location of sub-basin within the watershed, low

numbers represent upstream basins. ET is evapotranspiration.

Fig. 8. Mean monthly water balance from model simulation (2001–2013) in Chamelia

watershed. ET is evapotranspiration.
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for NF and − 5 to 34% for FF. The rate of increase is even higher for

RCP8.5 scenarios.

We further analysed whether the annual increase applies to all the

seasons. Table 6 shows that only MAM season follows consistent in-

creasing trends from NF to FF as the case of annual values; albeit, the

rate of change is higher for MAM season compared to the annual ones.

Other seasons do not showa consistent gradual increasing or decreasing

trends from NF to FF; however, all the seasons show an increasing trend

fromNF toMF. The range of projection bracket increaseswhenwemove

from NF to MF, suggesting again for higher degree of uncertainly in pro-

jection when we move towards far future.

Such trends suggest that the RCMs show consensus that future

change will likely increase amount of winter rain (from westerlies)

and extend the duration. The two rainfall seasons typically seen in

Western Nepal are likely to be more prominent under climate change.

The dry season ensemble values indicate increasing trend, however

decreasing trend is also projected by some of RCMs. In addition, the

magnitude and direction of change is not consistent through the years

and RCMs. The average increasing trend in precipitation gives a reflec-

tion of positive impacts. This potential increase can help hydropower

developers generatemore energy during dry season; contribute to over-

coming energy-scarcity; and provide water for dry season irrigation. In

the meantime, as the demand for dry season energy is higher, it prom-

ises more revenue to the hydropower developers. However, increased

rainfall may aggravate water-induced disasters such as landslides and

floods (Bajracharya et al., 2018), especially downstreamof the river sys-

tem. This may result in land degradation and ultimately impact on lives

and livelihoods of the people who are less climate resilient.

3.3.2. Projected temperature

Unlike precipitation, average annual time series of the projected

temperature shows a clear increasing trend until the end of the century

for both maximum and minimum temperatures (Fig. 9). Projected

range of average annual maximum temperature within each future pe-

riods are 25.5–27.1 °C for NF, 25.6–27.1 °C for MF, and 25.5–29.7 °C for

FF (Fig. 9), higher than the baseline value of 24.1 °C. In case ofminimum

temperature, the range is 12.8–14.4 °C for NF, 13.7–14.7 for MF, and

14.4–18.3 for FF. In both cases, the range widenswhen we move further

towards future, reflecting more uncertainty towards far future.

3.3.2.1. Maximum temperature. The range of predictions for maximum

temperature across the different RCM provides more consensus and

certainty than that seen for precipitation. All changes for all RCMs,

RCPs and futures indicate increase with both means and medians

Fig. 9. Trends in long-term average annual total precipitation and max/min temperature at station 103. Baseline period shows observed data while future timeframes show range of bias-

corrected projections from different RCMs for both RCP scenarios. NF, MF and FF refer to near-, mid- and far-futures, respectively. The dark line shows ensemble of the 5 RCMs for the two

scenarios. Shaded areas indicate range in the projections.
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lying above zero (Fig. 11). The mean and median overlaps for all cases

indicating the projections over the years are spread evenly above and

below the mean. It is interesting to note that despite the disparity in

projected precipitation across ICHEC_RCA4 and REMO model, the max-

imum temperature (and minimum as well) follow the same behaviour

with overlapping ranges. On the other hand, the three CCAMmodels are

slightly dissimilar in comparison to their behaviour for precipitation.

Projected average annual maximum temperature for RCP4.5 scenar-

ios, based on an ensemble of five RCMs, are gradually increasing com-

pared to the baseline over three future periods by 0.9 °C (for NF), 1.4

°C (for MF) and 1.6 °C (for FF) (Table 7). In case of RCP8.5, it is projected

to increase by 3.4 °C until the FF. It is increasing across all the seasons

too, but the amount of increase is not consistent. Winter (DJF) temper-

ature is projected to increase more for all the three futures and two sce-

narios considered, followed by dry (or pre-monsoon; MAM) season

(Table 7). It reflects that warmer winters are expected in the Chamelia

watershed during all the future periods considered. However, it should

be noted that rate of increase is not consistent throughout the RCMs and

years as shown as range in Table 7. The range of uncertainty in the

Fig. 10. Range of projected change in annual total future precipitation for different futures, RCPs and RCMs at station 103. Each box represents range in one RCM where whiskers indicate

max and min values excluding the outliers, line markers indicate the median and x markers indicate the mean of change in annual total precipitation projected for each future timeframe.

(Notes: DJF is December–January–February (winter season); MAM is Mach–April–May (dry season); JJAS is June–July–August–September (rainy/monsoon season); ON is October–

November (post-monsoon season).)

Table 6

Projected changes in total precipitation [mm] at seasonal and annual scales at st103 sta-

tion based on an ensemble of five RCMs under RCP scenarios.

Change from baseline [%] DJF MAM JJAS ON Annual

Baseline [mm] 111.8 206.0 982.5 39.3 1340.7

RCP 4.5 NF Mean [%] 22 26 5 15 10

Range [%] −36–162 −33–90 −14–24 −72–341 −10–30

MF Mean [%] 37 28 3 18 10

Range [%] −45–209 −15–92 −13–22 −74–208 −3–29

FF Mean [%] 35 39 5 16 13

Range [%] −28–134 −25–86 −14–24 −46–113 −5–34

RCP 8.5 NF Mean [%] 22 29 6 18 11

Range [%] −35–75 −27–90 −11–30 −52–180 −5–27

MF Mean [%] 13 38 11 12 15

Range [%] −38–106 2–120 −12–36 −52–104 −2–35

FF Mean [%] 16 44 8 42 15

Range [%] −37–99 −7–122 −20–26 −40–197 −13–31

Notes: DJF is December–January–February (winter season); MAM is Mach–April–May

(dry season); JJAS is June–July–August–September (rainy/monsoon season); ON is Octo-

ber–November (post-monsoon season).
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projection is relatively high in winter (DJF) and pre-monsoon (MAM)

seasons (Fig. 11).

3.3.2.2. Minimum temperature. The range of predictions for minimum

temperature across the different RCMs, RCPs, and seasons provide

more consensus and certainty that future minimum temperatures will

rise as all model medians and majority of model projections lie above

zero (Fig. 12).

The average annual minimum temperature is projected to increase

from the baseline value by 0.9 °C, 1.7 °C, and 2.0 °C for NF, MF and FF, re-

spectively, under RCP4.5 scenarios (Table 8). In case of RCP8.5 scenarios,

the rate of increase is significantly higher; up to 3.9 °C increase from the

baseline period for FF. The increasing trend is consistent across all the

seasons and for both the scenarios; albeit the rate of increase varies

with the season. A higher rate of increase is projected for summer

(JJAS) andwinter (DJF) seasons in both scenarios, whichmeanswarmer

nights in the summer and winter. The uncertainty range in the change

of projected minimum temperature varies with season; higher degree

of uncertainty exists in pre- and post-monsoon seasons (Fig. 12). Unlike

precipitation, the range of uncertainty in temperature increase (both

minimum and maximum) is considerably less. It increases when we

move from NF to FF.

3.4. Climate change impacts on water availability

Change in water balance components under he projected changes in

future temperature and precipitation were simulated using the

calibrated and validated SWAT model and analysed at annual as well

as seasonal scales. The water balance components considered were:

Fig. 11. Range of projected change in future maximum temperature for different scenarios and RCMs for the study watershed. Each box represents range in one RCM where whiskers

indicate max and min values excluding the outliers, line markers indicate the median and x markers indicate the mean of change in annual total precipitation projected for each future

timeframe.

Table 7

Projected futuremaximum temperature [°C] at Chameliawatershed based on ensemble of

five RCMs under RCP scenarios.

Change from baseline [°C] DJF MAM JJAS ON Annual

Baseline [°C] 18.0 26.9 28.5 24.1 24.8

RCP 4.5 NF Mean [°C] 1.2 0.8 0.7 0.8 0.9

Range [°C] 0.2–3.4 −0.4–2.1 0.1–1.3 0.3–2.0 0.4–1.7

MF Mean [°C] 1.7 1.5 1.1 1.1 1.4

Range [°C] 0.6–2.7 0.1–3.0 0.5–1.9 0.2–2.2 0.8–1.8

FF Mean [°C] 2.2 1.6 1.3 1.5 1.6

Range [°C] 0.8–3.3 0.6–2.7 0.5–2.3 0.7–2.5 1.1–2.0

RCP 8.5 NF Mean [°C] 1.4 1.2 0.8 0.9 1.1

Range [°C] 0.4–2.6 −0.3–2.2 0.2–1.5 0.4–2.2 0.3–1.7

MF Mean [°C] 2.8 2.2 1.5 2.0 2.1

Range [°C] 1.6–3.7 0.6–3.2 0.6–2.3 0.7–2.8 1.0–2.9

FF Mean [°C] 4.3 3.5 2.6 3.4 3.4

Range [°C] 3.0–6.1 2.5–4.5 1.5–3.4 2.4–4.7 2.6–4.2
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precipitation, snowmelt, evapotranspiration, and water yield. Since ob-

served data for all the water balance components for the basin was not

available, we used the SWAT output for current hydrology as the refer-

ence baseline to estimate changes in the water balance components for

future scenarios. Climate change impacts are assessed at Qt120 (sub-

basin ID: 13) located near to the outlet of the Chamelia (Fig. 1).

The projected range of streamflow change for the future periods,

scenarios, and RCMs are shown in Fig. 13. The projected change in

streamflow for an ensemble of five RCMs shows increasing trend for an-

nual aswell as seasonal values, for all the future periods considered, and

for all the scenarios. For reasons other than MAM, individual RCMs pro-

ject increase in future streamflow with means and medians lying above

zero. As was seen for projected precipitation in Fig. 10, REMO projec-

tions are relatively dry while ICHEC_RCA4 projections are wetter than

other RCMs. ICHEC_RCA4 also has the widest range of streamflows.

Average annual streamflow is projected to increase gradually from

NF towards MF under both the scenarios (Fig. 14). For RCP4.5, the an-

nual values are projected to increase by 8.2% in NF, 12.2% in MF, and

15.0% in FF. Such a significant increase was also reported for other wa-

tersheds in Nepal (e.g., Immerzeel et al., 2013; Bhattarai and Regmi,

2016). The projected increasing trend is consistent across all the seasons

(Fig. 14). However, the increase in streamflow is greater inwinter (DJF),

and then for pre-monsoon (MAM), post-monsoon (ON), and then to

monsoon (JJAS) seasons. ConsideringRCP4.5 scenarios, theprojected in-

crease inwinter season (DJF) flow is 34% inNF, 40% inMF, and 42% in FF.

In addition, uncertainties in the simulate flow are shown with a grey

Fig. 12. Range of projected change in future minimum temperature for different scenarios and RCMs for the study watershed. Each box represents range in one RCM where whiskers

indicate max and min values excluding the outliers, line markers indicate the median and x markers indicate the mean of change in annual total precipitation projected for each future

timeframe.

Table 8

Projected future minimum temperature [°C] at Chameliawatershed based on ensemble of

five RCMs under RCP scenarios.

Change from baseline [°C] DJF MAM JJAS ON Annual

Baseline [°C] 5.1 13.3 19.2 11.1 12.9

RCP 4.5 NF Mean [°C] 1.1 0.9 1.0 0.9 0.9

Range [°C] 0.4–1.6 0–1.6 0.5–1.4 0.4–1.7 0.5–1.4

MF Mean [°C] 1.6 1.7 1.8 1.4 1.6

Range [°C] 0.9–2.2 1.1–2.4 1.3–2.1 0.7–2 1.2–1.9

FF Mean [°C] 2.0 2.0 2.2 1.8 2.0

Range [°C] 1.1–2.3 0.8–2.7 1.7–2.8 1.4–2.3 1.7–2.3

RCP 8.5 NF Mean [°C] 1.3 1.3 1.2 1.2 1.2

Range [°C] 0.5–2.3 0.5–1.9 0.7–1.8 0.4–2.4 0.7–1.9

MF Mean [°C] 2.4 2.5 2.6 2.3 2.5

Range [°C] 1.4–3.1 1.5–3.2 1.7–3.7 1–3.6 1.6–3.2

FF Mean [°C] 3.6 4.0 4.3 3.7 3.9

Range [°C] 2.8–4.3 2.9–5.1 2.9–5.6 3–4.5 2.9–4.7
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band indicating minimum-maximum range in projections aswell as av-

erage values for each period future timeframe. For long-term average

flow, historical as well as projected flows for all the seasons lie within

the mix-max band. The bandwidth is wider during high-flow season

and gradually decreases during low flow seasons. The wider bandwidth

indicating higher model prediction uncertainty may be propagated by

natural variability observed in streams during the high flow periods.

Similar trends can be seen in the historical and projected FDC shown

in the third row of Fig. 14.

Fig. 15 further analyses the change in water balance components

under future scenarios. The net water yield here refers to the net

amount of water contributed by the sub-basins and HRUs to the

streamflow. The increase in streamflow is mostly contributed by in-

creases in precipitation (Fig. 15). The increase in total streamflow is

less compared to the increase in precipitation because of loss of some

precipitation by evapotranspiration. In addition, percolation has also in-

creased significantly with an increasing rate towards the future

(e.g., 37.1% in NF, 40.1% in MF, and 43.7% in FF under RCP4.5 scenario).

On the other hand, even though the precipitation and total streamflow

have increased, overland flow (SurQ) has decreased. In Annex-4we fur-

ther analysed changes in actual evapotranspiration (AET) to confirm the

trend. Figures show that AET is projected to increase from near to far

future across all the months/seasons and scenarios as the result of

projected increase in temperature. The projected increase (w.r.t. base-

line) in average annual AET for RCP8.5 scenario ranges from 15% in NF

to 20% in FF; however, there is a strong seasonality in magnitude of

the change. The increase in DJF season ranges from 58% (NF) to 68%

(FF), whereas from 29% (NF) to 37% (FF) (Annex-4). The aforemen-

tioned results indicate that more of SURQ is projected to be lost as

AET and there is a likelihood of an increase in groundwater recharge

with increased precipitation, and subsequent release into streams in

the form of baseflow (lateral flow and groundwater flow). The most

affected water balance component in the Chamelia watershed is the

percolation (with the largest percentage increase) followed by net

water yield, AET, and precipitation. The increased precipitation may

result increased frequency of wet soil conditions that are conducive to

percolation.

4. Conclusions

SWAT model was developed to simulate hydrological responses of

the Chamelia watershed. The model performance is reasonably good

in terms of capability to reproduce hydrological patterns including

flow duration curves and statistical properties of the observed daily

Fig. 13. Range of projected change (%) in simulated streamflow for the future periods, scenarios, and RCMs in the Chamelia watershed. Each box represents range in one RCM where

whiskers indicate max and min values excluding the outliers, line markers indicate the median and x markers indicate the mean of change in annual total precipitation projected for

each future timeframe.
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and monthly time-series. Multi-site calibration approach has ensured

better representation of hydrological variability within the sub-basin.

The model is most reliable for Q120 along the main stem of the water-

shed, which is also the most important station from a hydropower de-

velopment perspective.

Future climatic conditions were taken from five RCMs under two

RCP scenarios and bias corrected using quantile mapping method. On

an average, both annual and seasonal values of precipitation are

projected to increase, with a greater percentage of increase in winter

and pre-monsoon seasons. However, models project both increases

Fig. 14. Change in simulated streamflow at Q120 station under future climate represented as an ensemble of selected RCM outputs for RCP4.5 (top) and RCP8.5 (bottom) scenarios. The

first, second and third rows showmonthly hydrograph, change in streamflow frombaseline, and flowduration curve (FDC), respectively. NF,MF and FF refer to near-,mid- and far-futures,

respectively; Min-Max refer to a band of variation for the months.

Fig. 15. Impacts of projected changes in precipitation and temperature on annual averagewater balance components in the Chameliawatershed for near future (NF),mid future (MF), and

far future (FF) under RCP4.5 and RCP8.5 scenarios. W-Yield is water yield; AET is actual evapotranspiration; Precip is precipitation; Snow is snowmelt; Per is percolation; and SurQ is

surface runoff (or overland flow).
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and decreases in precipitation over the years, indicating lack of consen-

sus about precipitation change. Both maximum and minimum temper-

atures are projected to increase with higher certainty than with

precipitation; albeit, with varying rates. Water availability in the

changed future climate is also projected to increase gradually from

baseline to near-, mid-, and far-futures. An ensemble of five RCMs

shows dry season (or pre-monsoon and winter) water availability is

projected to increase at a higher rate than the average annual values,

which would be beneficial for water resources infrastructure projects.

While the average values for future precipitation, temperature and

streamflow indicate increases across all parameters for all the futures,

the SWAT model and RCMs considered also project decreases in these

values over time. Especiallywhen looking at seasonal responses, precip-

itation does not have a generic trend across the seasons. Based on the

five RCMs considered here across all futures for RCP 4.5, average annual

changes in precipitation at st103may vary between−10 and 34%;max-

imum temperature between 0.4 and 2.0 °C; and minimum temperature

between 0.5 and 2.3 °C. A deeper look at the consensus seen across the

models in each season is needed to further quantify the likelihood of

values within these ranges of projected future climate and water re-

source availability.

Local watersheds might also have various projects of importance

even if the sizes are not that large. This study indicates that local water-

sheds could be vulnerable to climatic risks and therefore should be

considered in the planning process. Results from this study provide a

benchmark for water available in the basin and discussion of water

allocation and use across various water users in the basin. Especially

with discussions of hydropower development, the quantification of

water balance components will be a key information for understanding

impacts across the water-energy-food nexus. Furthermore, as down-

stream watersheds have more base flow, interventions in the form of

recharge or watershed protection in the upstream is likely to have

positive impact in terms of enhancing dry season flows in the down-

stream. Therefore, water management needs to be coordinated across

the basin.
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